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Random Walk with Persistence 
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The exact analytic result is obtained for the Fourier transform of the generating 
function F(R, s)=Zff=0 snP(R, n), where P(R, n) is the probability density for 
the end-to-end distance R in n steps of a random walk with persistence. The 
moments (RZ(n)), (R4(n)), and (R6(n)) are calculated and approximate 
results for P(R, n) and (R - l (n ) )  are given. 
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1. I N T R O D U C T I O N  

In the context of random walk models for polymer chains, one is interested 
in properties such as the moments ( R  2t) of the end-to-end distance R (for 
l>~2) and the probability density P(R, n). r In this paper, such analytic 
results will be derived for a random walk with persistence. 

In the free flight model, a polymer is represented as a chain of n 
segments rk, k =  1 ..... n, each with a constant length Ir~[ =b ,  but with a 
random orientation. In the parlance of stochastic processes, ~3) rk is a 
"white process" as a function of the discrete time k. Thus, the end-to-end 
distance, 

R (n )=  ~ r~ (1) 
k = l  

being the sum of uncorrelated random variables rk, is a Markov process. 
We now consider a model with persistence, namely the kth segment rk, 
k = 2 ..... n, has the same direction as the segment r~_ 1 with probability p, 
and has a random orientation otherwise (probability 1 -  p). In this case, 
r~ itself is a Markovian process and therefore Rn alone is no longer 
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Markovian. This complication can be dealt with by considering the pair 
(Rn, r,), which again defines a Markov process. 

In the free flight model, subsequent segments are uncorrelated, and the 
correlation length is therefore equal to b. In the model with persistence, the 
correlation length is defined as 

a=b/(1-p)=ncb (2) 

The free flight model corresponds to the particular case p = 0. For a 
polymer length much larger than a, we expect the end-to-end distance to be 
close to Gaussian. We will study this approach to the Gaussian regime on 
the basis of exact results for ~R2(n)), ~R4(n)), and ~R6(n)). 

In Section 2, we derive the analytic result for 

F(k, s ) =  I dR exp(ik.  R) ~, snP(R, n) (3) 
n = 0  

for a random walk with persistence. In Section 3, we present the results for 
(R2), (.R4), and (R 6) and discuss their convergence to the Gaussian 
limit. In Section 4, we discuss the continuum of the random walk with 
persistence. 

2. R A N D O M  W A L K  W I T H  P E R S I S T E N C E  

Both for the sake of generality and for conceptual simplicity, we will 
consider, instead of a continuum of possible orientations g2(0, ~b) of the 
segments r~, a finite number of orientations s i, i =  1,..., N, in a general 
space. For example, s i may correspond to a number of allowed polar 
angles in a two-dimensional space, or it may refer to the orientation of a 
vector in a many-dimensional space. A continuum of orientations, such as 
appropriate for the polymer problem in three-dimensions, will be obtained 
by taking a suitable limit. 

At each step, an orientation is chosen. With a probability p, it is equal 
to the previous orientation, while it is any of the N -  1 remaining orien- 
tations with probability ( 1 - p ) / ( N - 1 ) .  Associated with each orientation 
we have a segment vector bi. The quantity of interest is the probability 
density for the end-to-end distance R as a function of the number of 
segments n. As discussed in the introduction, R(n) is not a Markov process, 
but a Markov process is obtained by including in the description the orien- 
tation i of the last segment. 

The probability density P(R, i, n) for an end-to-end vector R after n 
segments, with i being the orientation of the last segment, obeys the follow- 
ing master equation: 

P(R,i,n)=pP(R-bi, i,n-1)+ ~ P(R-b~,i',n-1) (4) 
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We will consider the following initial condition 

P(R, i, 0 )=  N-16(R) (5) 

Note that (4) has a structure analogous to the BGK model in kinetic 
theory (5) and to the Anderson-Kubo model in nuclear magnetic 
resonance, (6) except for the fact that the time variable n is discrete. See also 
Ref. 7 for a very similar model of a random walk with restricted reversals. 
The exact solution of (4) can be easily obtained by Fourier "Laplace" 
inversion. For the transform of the end-to-end probability density P(R, n) 

F(k, s) = ~, s ~ f dR [exp(ik" R)] P(R, n) 
n = O  

(6) 

with 

N 

P(R, n )=  ~ P(R, i, n) (7) 
i = l  

we find 

F(k, s )= Ar~ l  S(R, s) 1 N - 1  S(k, s) (8) 

with 

1 - p  1 

i = I  

Even though the inverse transformation leading to P(R, n) cannot be per- 
formed, this result allows one to investigate various limits and particular 
cases. 

Let us now apply (8) to the problem of a polymer chain in three 
dimensions. We have to take the limit in the case of a continuum of orien- 
tations. This leads to the following correspondences: 

N.,~ N-- ,  oo 

i <:~ s = (0, ~b) 

bi .~b(g2)=(bs inOcos~) ,bs inOs inqk ,  bcosO ) (10) 

~ d o dO sin 0 
i = 1  
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We thus obtain from (8) and (9) 

F(k, s )=  Ipkb+2parctan(l +ps- ps tan ~-~)1 

x (p+l)kb+2(p-1)arctan + PS tan (11) 
- ps 

F(k, s) is a function of k = Ikl, as was to be expected on the basis of spatial 
isotropy. 

3. M O M E N T S  OF T H E  E N D - T O - E N D  D I S T A N C E  

By expanding F(k, s) about k = 0, we find 

F(k, s) = ~ A2l(s) k 2! 
l = 0  

and, by comparison with (6), 

( - 1 ) '  
Az,(s)-(5];-~! ~ s"(R2'(n)) 

n=O 

(12) 

(13) 

Hence, such an expansion allows one to obtain explicit results for the 
moments of the end-to-end distance. 

This procedure quickly becomes tedious as 1 increases, but can be han- 
dled by a symbolic manipulator. We obtain 

(R2(n))=nb 21+p 2pb 2 1 -P  n 
1 - p  (1 _p)2 (14) 

5 4 2 ( 1 + P )  2 
( R 4 ( n ) ) = ~ b n  ( l - - p )  2 

16 pn+l l + p  
+ -3- b4n 2 + 4b4np, + 1 

(1 _p)2 (1 _p)3 

8 4 (1--P")(p2+p+l) 
+ ~ b  p ( l _ p )  4 

2 4 l + p  ~b n ~ ( p 2  + lOp+ l) (15) 



Random Walk  wi th  Persistence 387 

(R6(n))=3~ b6n3 (l + p)3._}_8__~ b6n 4 p,,+l 
(1 __p)3 (i- Z-p)2 

128 1 + p 
+-9 -b6n3pn+ l (1 _ p ) 2  

2 b6n2 pn+ 1 
- 9  (1--- p)  4 (35p2-  58p + 35) 

4 b6npn+ 1 l + p  9 (1---p) 5 (29p2 + 62p + 29) 

32b6 p 1 - p "  3 ( l - p )  6(p4+p3+p2+p+l) 

__ 1 4  b6n2 (1 + p)2 (p2 + 5p + 1) 
3 (1 _ p ) 4  

4 l + p  
+-~b6n--(i (4p4 +63p3 +46p2 +63p+4) _p)5 (16) 

The result (14) is in agreement with the general result for the second 
moment of the end-to-end distance of a random walk with "first-order 
correlations" (see Ref. 9). Approximate results for ( R  4) and ( R  6) have 
been obtained by computer simulation in Ref. 10. All the results in Table II 
of that paper agree within the simulation error with the analytic results 
(15) and (16). 2 

In the limit p ~ 0, the results (14)-(16) reduce to those for the free 
flight model(l'2): 

(R2(rt) )FF = nb2 (17) 

(R4(n))FF -= [~n(n- 1 ) + n ]  b 4 (18) 

(R6(n))vv = [(35/9)n(n-- 1)(n--2)+7n(n-- 1 ) + n ]  b 6 (19) 

On the other hand, for n large, or more precisely for n much larger than nc 
[cf. (2)], R converges to a Gaussian random variable with the following 
relations between the moments: 

(R4(rt) )G = ~(R2(n) )2 

( R6(n) )G = (35/9) (R2(n))3 
(20) 

(21) 

2 There seems to be something systematically wrong with the results of Table I in Ref. 10. 
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In order to investigate the convergence to the Gaussian limit, we have 
plotted the ratios (R4}/ (5/3)(R2}  2 and (R6)/(35/9)(R2) 3 as a function 
of n/nc = L/a for several values of p in Figs. 1 and 2 (L = nb). 

Another quantity of interest in polymer statistics, which arises when 
evaluating hydrodynamic interactions between the polymer beads, is the 
average (R ~(n)). In the Gaussian limit, one has 

( 1/R(n ) } o = [6/zt (R2(n) > ] 1/2 (22) 

To calculate corrections to this limit, one can expand the probability 
P(R, n) in a series of Hermite polynomials as follows (#2= 3R2/(R2}): 

P(R,n)=~27~.R:}) e x p -  1 + ~ ( ( # 2 } - 3 ) - - - ~  

m + ~. ((/~4) _ 10(g2)  + 15) Hs(/t) 
# 

1 + ~ ( (#6}  _ 21(#4}  + 105(g2 } _ 105) H7(#) 
//  

+ . . . ]  (23) 

To evaluate the coefficients of H3, Hs, and H7, the expressions (14)-(16) 
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Convergence of the sixth moment to the Gaussian limit, as a function of L/a. 

can be used. A typical probability profile is plotted in Fig. 3. The 
corresponding expansion for {R l(n))  reads (n 

( 3,,2(63 <R,> 9 
( R - ' ( n ) ) = \ ~ ( R 2 ) J  \ 8 0 ( R 2 )  z 1 1 2 ( R 2 ) 3 /  (24) 

This result is plotted in Fig. 4 for different values of p. The agreement with 
the numerical results of Ref. 10 is, as could be expected, not so good, 
because the series expansion of the probability density P(R, n) in Hermite 
polynomials does not converge rapidly enough. 

4. T H E  C O N T I N U U M  L I M I T  

A polymer model in polymer statistics for which analytic results can 
be obtained is the so-called wormlike chain. It can be looked upon as the 
continuum limit of the free rotation model in which the bond angle 00 is 
converging to 180 ~ while at the same time the length b of each segment 
is going to zero and the number of segments to infinity, with n b = L  
and b/(1 + cos 0o) constant. An analogous limit can be formulated for the 
persistent random walk model: 

b 
n---,o% p--*l,  b--*0 with n b = L ,  - - = a  const (25) 

1 - p  
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The evolution equation for the probability density P(R, i, L) becomes 

0 1 
- -  - -  ~ P ( R ,  i' ,  L )  o L P ( R ' i ' L ) = a ( N _ I ) ,  ~ 

1 0 
- -  - P ( R ,  i, L )  - -  u i �9 --~-~-~ P ( l ~ ,  it L )  

a o N  
(26) 

with 

ui= lira bib (27) 
b ~ 0  

This equation can be solved by Fourier-Laplace transformation 

F(k ,z )=]o  dL[exp(-zL)]  dR[exp( ik .R)]P(R,L)  (28) 

with 

N 

P(R, L ) =  ~ P(R, i, L) (29) 
i = 1  

One finds (using (10)): 

a arctan[ak/(1 + az)] 
F(k, z) = (30) 

ak - arctan[ak/(1 + az) ] 

This result can also be obtained from (11). The moments of the end-to-end 
distance read 

 R2,Lt  2a2E  ] 131, 

( R 6 ( L ) )  = 8 a  6 - -  --~ + 20 -- - - -  
a 3 

+ [ ~ ( L )  4 + 3 2 ( L ) 3 - 1 9  \ a ) 3 ( L )  2 - - 3 - a 4 0 L + ~ l e x p ( L ) } ( 3 3 )  

The ratios (R  4)/(5/3)(R 2 ~2 (R 6)/(35/9)(R2)3, and ( 1/R)/( 1/R)~ for 
the present continuum model have also been included in Figs. 1, 2, and 4, 
as well as the corresponding results for the wormlike chain. 
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5. C O N C L U S I O N  

In this paper, we have shown that the random walk with persistence 
can, to a certain extent, be treated analytically. Apart from its intrinsic 
interest, the model can thus be used to test the validity of approximation 
schemes or to check numerical calculations. From Figs. 1, 2 and 4, it 
follows that the approach to the Gaussian form is rather insensitive to the 
value of p, provided that the length L =-nb of the polymer is expressed in 
terms of the correlation length a. Finally, we note that the present model 
differs strikingly from the wormlike chain. 
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